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A B S T R A C T   

 

        Liquefaction can cause ground subsidence, flow failure and lateral spreading among other effects. Estimation of the hazard of lateral spreading requires 

characterization of subsurface conditions. In this paper, the relation between liquefaction induced lateral displacements and both geotechnical and earthquake 

soil parameters is investigated. In order to assess the merits of the proposed approach, database containing 526 data points of liquefaction-induced lateral 

ground spreading case histories from eighteen different earthquakes are used from renowned references. This study addresses the question of whether Group 

method of data handling (GMDH) type neural networks could be used to estimate lateral displacement based on specified variables. At the end the results of 

this paper models are compared with those of a commonly used and the advantages of the proposed GMDH model over the conventional method are 

highlighted. 
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INTRODUCTION 
 

Nomenclature 

DH Horizontal displacement 

D5015Average grain size for granular materials within T15 

F15 Average fines content (finer than 75 lm) for granular materials included within T15 

H Average thickness of the liquefied layer 

L Distance to the free face from the point of displacement 

LSI Liquefaction severity index 

MW Earthquake moment magnitude 

(N1)60Corrected standard penetration test (SPT) blow count number 

R Nearest horizontal distance of the seismic energy source to the site  

R*Distance coefficient that is a function of earthquake magnitude 

R2Coefficient of determination 

S Slope of ground surface 

T Average thickness of the liquefied surface layer 

T15Cumulative thickness of saturated cohesion-less soil layers with corrected SPT number (N1)60 less than 15 

W Free face ratio 

amax Maximum horizontal ground acceleration  

β Ground surface slope angle 

φ'eqv,liq The equivalent mobilized angle of internal friction of liquefied 

ay yield acceleration 

zcr critical potentially liquefiable soil sub-layer depth 

𝜽i , bi constant of equations obtained empirically 

  
 Liquefaction occurs in saturated sand deposit due to increase in excess pore water pressure during earthquake induced cyclic shear stresses. It can cause 

destruction or serious damage to structures. In order to investigate this phenomenon and mitigate its associated damages, study of liquefaction mechanism is 

significant. Liquefaction mechanism contains ground subsidence, flow failure, lateral spreading among other effects . Among liquefaction mechanism, lateral 

spreading can be more hazardous (e.g. San Francisco Earthquake, 1906) (Youd et al., 2002). Lateral spreading involves the movement of relatively intact soil 

blocks on a layer of liquefied soil toward a free face or incised channel. Lateral spreading can induce different forms of ground deformations and in the vicinity 

of natural and cut slopes can be very destructive. A number of approaches have been proposed for prediction of the magnitude of lateral ground displacements 

under different conditions. All of them can be categorized into Figure 1.  
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Figure 1. Classification of the approaches of lateral spreading predictions 

 
 However, all predictions based on any of the above-mentioned approaches require determination of input parameters, which are prone to uncertainties and 

inaccuracies. The effect of any inaccuracies of input data in the numerical and analytical approach may be studied by a sensitivity analysis of the predictions on 

various input data. However, due to versatility, empirical and semi-empirical correlations remain at the centre of practice (AlBawwab 2005).  

 The interdependency of factors involved in such problems prevents the use of regression analysis and demands a more extensive and sophisticated method. 

The Group Method of Data Handling (GMDH) type neural networks optimized by Genetic Algorithms (GAs) can be used to model complex systems, where 

unknown relationships exist between variables, without having specific knowledge of processes. In recent years, the use of such self-organizing networks has 

led to successful application of the GMDH-type algorithm in geotechnical sciences (e.g. Ardalan et al., 2009; Kalantary et al., 2009; Molaabasi et al., 2013). 

 This treatment aims to develop a GMDH-type NN for the prediction of Lateral Displacement, based on various soil conditions. To this end the paper first 

reviews previous efforts in predicting of lateral displacement, then a brief explanation of the case histories under consideration, and the phenomena of modeling 

with GMDH are presented. Finally the developed GMDH model is described and its accuracy is assessed through previous effort.  

 

Review of the available methods  

 Following the concept presented in figure 1, two basic approaches are described here; computational based and experimental based approaches. In the 

computational methods, basic parameters are input into analytical or numerical models to predict the extend of the effect, whereas in the latter approach laboratory 

and/or field test results are used in conjunction with case histories to develop empirical correlations. In recent years new identification techniques have further 

enhanced the latter approach by providing fast and efficient codes for development of empirical models. A brief review of each approach is provided here: 

 

Computational Based Methods 

 Numerical and analytical methods have widely been used in geomechanics to simulate patterns of kinematic behaviour under various loadings. The success 

of such methods is highly dependent on the constitutive model or the simplified geometry used.  

 The finite element or finite difference method are perhaps the most widely used numerical methods. However these procedures are highly dependent on 

material parameters that are usually difficult to estimate and as a result, limited success has been achieved in producing results that are comparable to field 

observations (Javadi et al., 2006) 

 Numerical methods can also been utilized in conjunction with soft computing techniques to enhance or produce databases. Analytical models have also 

contributed to the development of knowledge in this field. 

 

Experimental Based Methods 

 Due to complexities of the phenomenon, the aforementioned constitutive models as well as simplified analytical methods have failed to capture the full 

effect and thus empirical models based on case histories have remained as a popular method in the past decades.  

 Hamada et al., (1986), Youd and Perkins 1987, Bardet et al., (1999) and Youd et al., (2002) introduced empirical correlations and multi-linear regression 

(MLR) models for the assessment of liquefaction-induced lateral spreading. 

 Al Bawwab (2005) used SPSS 2004 software for statistical analysis of new sets of databases and arrived at a number of correlations for determination of 

lateral displacement. In order to enhance the accuracy of the models, a maximum likelihood approach was considered and the effect of data uncertainty was 

taken into account by a probabilistic methods. 

 Kramer and Baska (2007) proposed a variation to the correlation presented by Youd et al., (2002); they based their model on a square root transformation 

of displacement rather than the logarithmic transformation used.  

 On a different note, Zhang et al., (2004) based their empirical correlation on a cumulative shear strain model; they introduced a “lateral displacement index 

(LDI)” calculated by integration of maximum shear strain over potentially liquefiable layers and then use it in a couple of simple correlations for “free-face” and 

“ground slope” case. Idriss and Boulanger (2008) used a different cumulative strain model to arrive at LDI.  

 Error! Reference source not found. shows some of the empirical models found in the literature. Due to different form of prediction, Zhang et al., (2004), 

Kramer and Baska (2007) and Idriss and Boulanger (2008) models have not been included in this table1. 

 

Table 1.  Empirical correlations for prediction of the lateral displacement 
Method Subset Model limitations 

Hamada et al. (1986)  

 

DH = 0.75 H1/2 θ1/3 Number of case histories and 

variables 

Youd and Perkins 

(1987) 

Log DH = -3.49 – 1.86 Log R + 0.98 Mw Number of case histories and 

specific soil profile and 

topography conditions 

Bardet et al. (1999) free-face Log (DH+0.01) = -17.372 + 1.248Mw - 0.923LogR - 0.014R + 0.685LogW + 

0.3Log T15 + 4.826Log (100-F15) - 1.091D5015 

Number of case histories and 

mistakes in databases that correct 

in youd models. Slopping ground Log (DH+0.01) = -14.152+0.988Mw-1.049Log R-0.011R+0.318Log S 

+0.619LogT15+4.287Log (100-F15)-0.705D5015 
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Youd et al. (2002) free-face Log DH = -16.713+1.532Mw-1.406Log R*-0.012R+0.592LogW 

+0.540LogT15 +3.413Log (100 - F15)-0.795Log (D5015+0.1 mm) 

5 ≤ W ≤ 20% 

6 ≤ MW ≤ 8, 0.1 ≤ S ≤ 6%, 1 ≤ 

T15 ≤ 15 m, gravelly and/or very 

silty soils,critical depth up to 10 m 

Slopping ground Log DH = -16.213+1.532Mw-1.406Log R*-0.012R+0.338Log S+0.540LogT15  

+3.413Log (100 - F15)-0.795Log (D5015+0.1 mm) 

Kanibir (2003) free-face Log DH = -20.71+25.32Log Mw-1.39Log R*-0.009R+1.15Log W+0.19T15 0.5 

-0.02F15-0.84Log (D5015+0.1 mm) 

Uncertanity not assumed 

Slopping ground Log DH = -7.52+8.44Log Mw+0.001R*-0.23R+0.11S+0.6Log T15-0.22F15 -

0.89Log D5015 

Al Bawwab (2005) Model 1 Log DH =b1·LSI+b2·ay/amax+b3·tanβ/tanφ'eqv,liq+b4·zcr+b5·Mw 

+b6·W+b7 

Probabilistic analysis included 

Model 2 LogDH =b1·LSI+b2·ay/amax+b3·tanβ/tanφ'eqv,liq+b4·zcr+b5·Mw 

+b6·LogS+b7·LogW+b8 

Model 3 LogDH=b1·LSI+b2·ay/amax+b3·tanβ/tanφ'eqv,liq+b4·Logzcr+b5·LogMw 

+b6·amax+b7·LogS+b8·LogW+b9 

Model 4 LogDH= [(θ1LSI+θ2)ay/amax +(θ3LSI+θ4)tanβ/tanφ'eqv,liq + (θ5LSI+θ6)Log zcr 

+(θ7LSI+θ8)Log Mw +(θ9LSI+θ10)amax + (θ11LSI+θ12)LogS +(θ13LSI+θ14)Log 

W +(θ15LSI+θ16)+ 𝜀] 

 

 The difficulties posed by the fact that the phenomenon is dependent on multiple parameters has partly been alleviated by soft computing techniques such 

as fuzzy logic, neuron computing, probabilistic reasoning, genetic algorithm. These methods of decision making and optimization have firmly established 

themselves as indispensable tools for modeling natural phenomena. 

 The artificial neural network (ANN) has been used for modeling the seismically induced displacement based on the same database used in the Multi Linear 

Regression model developed by Bartlet and Youd (1992). 

 In the light of the above mentioned techniques, a new approach is proposed here which combines the benefits of empirical models, neural networks with 

an optimization method.  

 

The proposed model 

 Following the trend proposed by Al Bawwab (2005), ay/amax, tanβ/tanφ'eqv,liq, and zcr variables are used instead of T15, F15, and D5015 which were 

used in some of the earlier models. This can be considered as a step toward reaching to a more descriptive group of variables and consequently, a more powerful 

representative correlation. The descriptive variables are fully explained in Table 2. 

 Where ay is the yield acceleration (g) equal to tan(𝜑'eqv,liq-β) with finite slope assumption, and 𝜑'eqv,liq is the equivalent mobilized angle of internal 

friction of liquefied or potentially liquefiable soils (Strake et al., 1992). 
Among the descriptive variables, there are two topological parameters (W and S) which refer to sloping sites without a free face (i.e. W=0) and level sites with 

a free face (i.e. S=0) as in Fig 2. 

 With these definitions the case histories can be divided into two subsets of sloping sites without a free face and non-sloping sites with a steep face.  

 In order to involve a model, a database is required. The database used in this paper consists of 526 case histories compiled by Youd et al. (2002) including 

1906 San Francisco–USA, 1964 Prince William Sound–Alaska, 1964 Niigata–Japan, 1971 San Fernando–USA, 1979 Imperial Valley–USA, 1983 Borah Peak–

USA, 1983 Nihonkai-Chubu–Japan, 1987 Superstition Hills–USA, 1989 Loma Prieta–USA, and 1995 Hyogoken-Nanbu–Japan and 91 case histories from 7 

different earthquakes added by Al Bawwab (2005), including the 1976 Guatemala, 1977 San Juan-Argentina, 1990 Luzon-Philippines, 1994 Northridge-USA, 

1995 Hyogoken-Nanbu-Japan, 1999 Kocaeli (Izmit)-Turkey, 1999 Chi Chi- Taiwan, 2003 San Simeon-USA and 2003 Tokachi-Oki-Japan earthquakes. 
 

Table 2. Deprive variables for predicting the lateral displacement 
Descriptive variables of a particular soil sub-layer. 

Seismological MW 

Duration of shaking 

Moment magnitude scale of the earthquake [21-23] 

amax 

Intensity of shaking 

Maximum Horizontal Ground Acceleration (g) 

Topographical W  

Soil profile slope 

Free-face ratio = H/L (%) 

S  

Ground conditions 

Ground Surface Slope (%) 

 

β  

Ground conditions 

Ground surface slope angle (degrees) = tan-1(S/100) 

Geotechnical 

 

tan 'eqv,liq/tanβ 

Gravity force 

FS Against Gravitational Forces  

LSI  

Distribution of liquefaction potential through the depth 

Liquefaction Severity Index 

ay/amax   

Sliding force 

FS Against sliding  

zc  

Effective potentially liquefiable depth 

Critical Depth 

 

Principles of Modeling using GMDH type Neural Network 
 The GMDH algorithm is a self-organizing approach by which gradually complicated models are generated based on the evaluation of their performances 

on a set of multi-input single-output data pairs (xi, yi) (i=1, 2,…, m). The GMDH was first developed by Ivakhnenko (1971) as a multivariate analysis method 

for complex system modeling and identification. The main idea of GMDH is to build an analytical function in a feed forward network based on a quadratic node 

transfer function whose coefficients are obtained using regression technique. 

 By means of the GMDH algorithm, a model can be represented as a set of neurons in which different pairs of them in each layer  are connected through a 

quadratic polynomial, and thus, produce new neurons in the next layer. Such representation can be used in modeling to map inputs to outputs. The formal 

definition of the identification problem is to find a function f̂ that can be approximately used instead of the observed one, f in order to predict output ŷ for a given 

input vector X = (x1, x2, x3, … , xn) as close as possible to its observed output y. Therefore, given M observations of multi-input, single output data pairs so that 
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Yi = f(xi1, xi2, xi3, … , xin)       (i = 1,2,3, … , M)                                                                                          (1)                     

It is now possible to train a GMDH type neural network to predict the output values yî for any given input vector X = (xi1, xi2, xi3, … , xin) , that is  

 yî = f̂(xi1, xi2, xi3, … , xin)       (i = 1,2,3, … , M)                                                                               (2) 

The problem is now to determine a GMDH type neural network such that the square of differences between the observed output and predicted one is minimized, 

that is   

 ∑ [f̂(xi1, xi2, xi3, … , xi) − yi]
2M

i=1 → min                                                                                           (3) 

The general connection between input and output variables can be expressed by a complicated discrete form of the Volterra functional series, known as the 

Kolmogorov-Gabor polynomial; hence: 

y = a0 + ∑ aixi
n
i=1 + ∑ ∑ aijxixj

n
j=1

n
i=1 + ∑ ∑ ∑ aijkxixjxk

n
k=1

n
j=1

n
i=1 + ⋯                                        (4) 

This full form mathematical description can be represented by a system of partial quadratic polynomials consisting of only two variables (neurons) in the form 

of: 

ŷ = G(xi, xj) = a0 + a1xi + a2xj + a3xixj + a4xi
2 + a5xj

2                                                              (5) 

By this means, the partial quadratic description is recursively used in a network of connected neurons to build the general mathematical relation between inputs 

and output given in Eq. (4). The coefficients ai in Eq. (5) are calculated using regression techniques, so that the difference between the observed output,  y, and 

the calculated one, ŷ , for each pair of xi, yi as input variables is minimized. Apparently, a tree of polynomials is constructed using the quadratic form given in 

Eq. (5) whose coefficients are obtained in a least squares scheme. In this way, the coefficients of each quadratic function Gi are derived to fit optimally the output 

in the whole set of input–output data pairs, that is 

E =
∑ (yi−Gi( ))2M

i=1

M
 → min                                                                                                                                 (6)                                                                   

In the basic GMDH algorithm, all possibilities of two independent variables out of the total n input variables are taken in order to construct the regression 

polynomial in the form of Eq. (5) that best fits the dependent observations(yi , i = 1,2, … , M) in a least squares sense. Consequently, (n

2
) =

n(n−1)

2
 neurons will 

be built up in the first hidden layer of the feed forward network from the observations  {(yi, xip, xiq); (i = 1,2, … M)} for different p, q ∈ {1,2, … , n}.  

In other words, it is now possible to construct M data triples {(yi, xip, xiq);  (i = 1,2, … M)} from observations using p. q ∈ {1,2, … , n} in the form of: 

[

x1p x1q y1

x2p x2q y2

xMp xMq yM

] .                                                                                                                            (7) 

Using the quadratic sub-expression in the form of Eq. (5) for each row of M data triples, the following matrix equation can be readily obtained as  

Aa = Y                                                                                                                                               (8) 

a = {a0, a1, a2, a3, a4, a5}                                                                                                                   (9) 

Y = {y1, y2, y3, … , yM}T                                                                                                                   (10) 

Where; a is the vector of unknown coefficients for the quadratic polynomial in Eq. (5), and Y is the vector of output values from observation. It can be readily 

seen that:  

A = [

1
1

x1p x1q x1px1q x1p
2 x1q

2

x2p x2q x2px2q x2p
2 x2q

2

1 xMp xMq xMpxMq xMp
2 xMq

2

]                                                                                 (11)                     

The least squares technique from multiple regression analysis leads to solution of the normal equations, 

a = (ATA)−1ATY                                              (12) 

This determines the vector of best coefficients of Eq. (5) for the whole set of M data triples. It should be noted that this procedure is repeated for each neuron of 

the next hidden layer according to the connectivity topology of the network. However, such a solution directly from normal equations is rather susceptible to 

round off errors and, more importantly, to the singularity of these equations (Nariman-zadeh et al.,2005) 

There are two main concepts involved within GMDH type neural networks design, namely, the parametric and the structural identification problems. Nariman-

Zadeh et al., (2005) present hybrid GA and singular value decomposition (SVD) method to optimally design such polynomial neural networks. The methodology 

and general description of this technique is beyond the scope of this study, and complementary information may be found in Kalantary et al., (2009). 

 

Modeling lateral displacement using GMDH-type neural network 

 In order to demonstrate the prediction ability of evolved GMDH-type neural networks, experimental data have been divided into two different sets, namely, 

training and testing sets.  

The GMDH type neural networks are now used for such inputs-output data to find the polynomial model of Lateral spread displacement in respect to its effective 

input parameters. The structure of the evolved 2-hidden layer GMDH type neural networks for free face is shown in Figure. 2 corresponding to the genome 

representations of debbggah for Lateral spread displacement in which a, b, d,g and h stand for mw, amax/g, w, ay/amax and tanβ/tan φ , respectively. 

The structure of the evolved 2-hidden layer GMDH type neural networks for Gently slope is also shown in Figure.3 corresponding to the genome representations 

of becdbeda for Lateral spread displacement in which a, b, c, d, and e stand for mw, amax/g, s, w, ay/amax and LSI, respectively. 

The good behaviour of such GMDH-type neural network models as a sample of 100 random databases is also illustrated in Figure.4 and 5. The corresponding 

polynomial representation of such model is as follows: 

Model for Free face 

y1 = 1.6295 + 0.0754x4 − 0.5615x5 − 0.0032x4
2 + 0.0845x5

2 + 0.0219x4x5 

y2 = −66.8585 + 17.4490x1 + 62.9983x8 − 1.0753x1
2 − 3.2844x8

2 − 9.467x1x8 
y3 = −3.2065 + 1.9846y1 + 14.7100x2 + 0.0480y1

2 − 5.3127x2
2 − 4.7955y1x2 

y4 = 3.5963 + 2.1500x7— 3.2194y2 + 0.0949x7
2 + 1.1521y2

2 − 2.3889x7y2 
Lateral displacement = 0.8467 − 0.0106y3 − 0.0174y4 − 0.0316y3

2 − 0.0484y4
2 + 0.3239y3y4 

Where (x1) , (x2), (x4 ), (x5), (x7) and ( x8), stand for (mw), (amax/g), (w), (LSI ), (ay/amax) and (tanβ/tan φ), respectively. 

Model for Gently sloping 

y1 = 0.7514 + 0.4836x2 + 0.4008x5 − 1.3377x2
2 − 0.0221x5

2 − 0.2009x2x5 

y2 = −0.1510 + 0.9796x3 + 0.4368x4 − 0.0687x3
2 − 0.0137x4

2 − 0.1204x3x4 
y3 = 0.7514 + .4836x2 + 0.4008x5 − 1.3377x2

2 − 0.0221x5
2 − 0.2009x2x5 
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y4 = −45.2457 + 12.7496x4 − 0.6228x1 − 0.8764x4
2 − 0.0025x1

2 − 0.1085x4x1 

y5 = 2.8959 − 2.1342y1 − 1.3577y2 + 0.2908y1
2 + 0.0949y2

2 + 1.1918y1y2 

y6 = 2.5156 − 1.4737y3 − 1.2706y4 − 0.0537y3
2 − 0.0554y4

2 + 1.4021y3y4 

Lateral displacement = 0.0398 − 0.7169y5 + 1.7332y6 − 0.2656y5
2 − 1.5379y6

2 + 1.7925y5y6 
Where (x1) , (x2), (x3 ), (x4), and ( x5), stand for (mw), (amax/g), (s), (LSI ), and (Zcr ), respectively. 

Some statistical measures given in Table. 3 are used in order to determine the accuracy of models.  These statistical values are based on R2 as absolute fraction 

of variance, MSE as mean squared error, and MAD as mean absolute deviation which is defined as follows: 

R2 = 1 − [
∑ (Yi(Model)−Yi(Actual))2M

i=0

∑ (Yi(Actual))
2M

i=1

] , MSE =
∑ (Yi(Model)−Yi(Actual))2M

i=0

M
, MAD =

∑ |Yi(Model)−Yi(Actual)|M
i=1

M
 (13) 

 The obtained polynomial model is now tested for unforeseen data during the training process which accordingly demonstrates the prediction ability of the 

model.  Figure. 6 shows a sample of 80 random databases and the comparison of such behaviour with the actual values. 
Comparison Analysis 

 The accuracy of the proposed model, in predicting lateral displacement, is compared with correlations presented previously by Hamada et al., (1986a), 

Youd et al., (2002) and Al Bawab (2005) models (cf. Table 1). The statistical comparison is performed for all the 526cases initially used for model development. 

Table.5 illustrates the accuracy of this study. 

 

Table 4. Model statistics and information for the group method of data handling-type neural network model for predicting the Lateral spread displacement 
Ground condition Subset Performance criteria 

R2 MSE MAD 

Free space Training 0.91 0.86 0.77 

Testing 0.92 0.91 0.8 

Gently sloping Training 0.94 0.25 0.42 

Testing 0.94  0.21  0.39 

 

Table 5. the accuracy of different methods 
Methods R2 

Hamada et al. (1986a) 13% 

Youd et al. (2002b) 74% 

Al Bawab (2005) models Model 1 66% 

Model 2 71% 

Model 3 74% 

Model 4 85% 

This study Method 

 

Free Face Condition 92% 

Gently Slope Condition 94% 

 

  
Figure 2. Evolved structure of the generalized GMDH neural network for 

free space condition 

 

Figure 3. Evolved structure of the generalized GMDH neural network for 

gently slope condition 

 
   

 
Figure 4. Neural network model predicted performance in comparison with actual data for the training set in free space model condition (150 input-output data) 
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Figure 5. Neural network model predicted performance in comparison with actual data for the training set in gently slope condition (170 input-output data) 

 
Figure 6. Neural network model predicted performance in comparison with actual data for the testing set in free face condition (80 inputs-output data) 

 

CONCLUSIONS  
 

 It has been attempted in this study to deploy a system identification technique to develop the lateral displacement correlation over geotechnical soils 

properties. The evolved GMDH type neural networks have been used to obtain a model for the prediction of lateral displacement. 

Databases of case histories consisting of 526 databases from 18 earthquakes were compiled. A polynomial model was developed for lateral displacement based 

on geotechnical and earthquake conditions. The validation and performance of the new model was assessed, and contrasted with previous statistical correlations. 

For all 526 case records, including lateral displacement and geotechnical soil properties, predicted and measured lateral displacement values were compared. 

The results manifest that predictions by the correlations of Hamada et al. (1986a), Youd et al. (2002b) and Al Bawab (2005) models, however the proposed 

approach predicts with high accuracy and low variance.  

Results obtained from this study and previous researches reveal that empirical correlations derived from a local dataset should not implemented for different 

sites with significantly varying features. Therefore, these proposed relationships should be used with caution in geotechnical engineering and should be checked 

against measured lateral displacements. 
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